Diketahuipanjang AB = 10 cm dan TA = 13 cm. Titik O merupakan titik tengah garis BE. Tentukan jarak antara titik T dan titik O. 5. Perhatikan bangun ber ikut ini. Jika diketahui panjang AB = 5 cm, AE = BC = EF = 4 cm, maka tentukan: a. Jarak antara titik A dan C b. Jarak antara titik E dan C c. Jarak antara titik A dan G 6.

Diketahui kubus dengan panjang rusuk 12 cm. Jarak ruas garis HD dan EG adalah …. A. 6 cm B. 6√2 cm C. 6√3 cm D. 8 cm E. 8√2 cm Pembahasan Jarak ruas garis HD dan EG merupakan ½ garis HF. Perhatikan ilustrasi gambar berikut Jadi jarak ruas garis HD dan EG adalah 6√2 cm. Jawaban B - Jangan lupa komentar & sarannya Email nanangnurulhidayat
MembagiGaris Menjadi Beberapa Bagian Sama Panjang. Buatlah sebarang ruas garis AB. Dari titik A, buatlah ruas garis AM dengan ukuran 5 bagian sama panjang sedemikian sehingga tidak berimpit dengan garis AB, yaitu AP = PQ = QR = RS = SM. Hubungkan titik M dengan titik B. Buatlah garis sejajar dengan ruas garis MB yang masing-masing garis
Selasa, 22 Desember 2020 Edit Berikut ini adalah pembahasan dan Kunci Jawaban Matematika Kelas 7 Semester 2 Halaman 129 - 131 Bab 7 Garis dan Sudut Ayo Kita berlatih Hal 129 - 131 Nomor 1 - 9. Kunci jawaban ini dibuat untuk membantu mengerjakan soal matematika bagi kelas 7 di semester 2 halaman 129 - 131. Semoga dengan adanya pembahasan serta kunci jawaban ini adik-adik kelas 7 dapat menyelesaikan tugas Garis dan Sudut Matematika Kelas 7 Semester 2 Halaman 129 - 131 yang diberikan oleh bapak ibu/guru. Kunci Jawaban Matematika Kelas 7 Halaman 129 - 131 Ayo Kita Berlatih 1. Salinlah dua garis berikut. Kemudian dengan menggunakan jangka dan penggaris bagilah masing-masing garis menjadi 7 bagian yang sama panjang. Jawaban Langkahnya,1. Ukur panjang garis dengan penggaris2. Bagi hasil pengukuran dengan 73. Rentangkan jangka selebar hasil pengukuran4. Letakkan jarum jangka ke pada ujung garis5. Buat penanda dengan jangka pada garis6. Ulangi cara ke 5 pada penanda yang baru 2. Salinlah dua garis berikut. Kemudian bagilah masing-masing garis dengan perbandingan 2 3. Jawaban Langkahnya, 1. Ukur panjang garis dengan penggaris 2. Bagi hasil pengukuran dengan 5 3. Rentangkan jangka selebar 2 x hasil pengukuran 4. Letakkan jarum jangka ke pada ujung garis 5. Buat penanda dengan jangka pada garis 3. Diketahui panjang ruas garis AB adalah 12 cm. Bagilah ruas garis AB tersebut menjadi 5 bagian sama panjang. Jawaban Langkahnya, 1. Bagi 12 dengan 5 2. Rentangkan jangka selebar hasil bagi3. Letakkan jarum jangka ke pada ujung garis 4. Buat penanda dengan jangka pada garis 5. Ulangi cara ke 4 pada penanda yang baru 4. Perhatikan gambar berikut. Tentukan nilai p. Jawaban AD / CD = BE / CE3 / 9 = p / 12p = 12 x 3 / 9p = 4 cmJadi, nilai p adalah 4 cm. 5. Perhatikan gambar berikut. Tentukan nilai x. Jawaban 3 / 6 = x / 4 + 6x = 10 x 3 / 6x = 5Jadi, nilai x adalah 5 cm. 6. Perhatikan gambar berikut Tentukan nilai x dan y. Jawaban AD / BD = AE / CE6 / 4 = x / 2x = 6 x 2 / 4x = 3 cmDE / AD = BC / AD + BDy / 6 = 10 / 6 + 4y = 1 x 6y = 6 cmJadi, nilai x = 3 cm dan y = 6 cm. 7. Perhatikan gambar berikut Tentukan panjang AB. Jawaban EF = CD x AE + AB x DE / AE + DE9,8 = 8 x 7 + AB x 3 / 7 + 39,8 = 56 + 3AB / 1098 = 56 + 3AB3AB = 98 - 56AB = 42 / 3AB = 14 cmJadi, panjang AB adalah 14 cm. 8. Diketahui titik E, F, dan G pada trapesium ABCD. Sisi FE sejajar dengan sisi AB. Jika AB = 7, DC = 14, DG = 8, FG = 4, GB = x , dan GE = y , maka nilai x + y adalah Jawaban FG / AB = DG / BD4 / 7 = 8 / 8 + x4 x 8 + x = 8 x 732 + 4x = 564x = 56 - 32x = 24 / 4x = 6EG / CD = BG / BDy / 14 = x / x + 8y / 14 = 6 / 6 + 8y = 6 / 14 x 14y = 6x + y = 6 + 6 = 12Jadi, nilai x + y adalah 12. 9. Perhatikan gambar berikut. Diketahui Trapesium ABCD, dengan AB//DC//PQ. Jika perbandingan AQ QC = BP PD = 3 2. Jawaban AB / x = BD / PD 10 / x = 2 + 3 / 2 5x = 20 x = 4 cmDC / PQ + x = AC / AQ 20 / PQ + 4 = 3 + 2 / 3 PQ + 4 = 60/5 PQ = 8 cmJadi, panjang ruas garis PQ adalah 8 cm.
Panjangbusur AB adalah 22 cm. 28122019 Diketahui AC merupakan diameter lingkaran panjang busur AB 12 cm dan besar sudut AOB 72o maka panjang busur BC adalah. 2 20 cm. Titik O merupakan pusat lingkaran OB AB yang merupakan jari-jari lingkaran r. Garis lurus AB merupakan panjang tali busur lingkaran dengan sudut pusat 90. 26092019 Pada
Olehkarena ruas garis AG merupakan diagonal ruang kubus maka panjang AG. Karona ruas garis AH tegak lurus dengan rusuk AB. 3 maka gambarkanlah letak titik P. AB AH HB AB 8 cm 6 cm AB 14 cm. Hitunglah jarak titik A ke ruas garis TC. Diketahui sebuah ruas garis AB dengan panjang 9 cm. 3 AB 4 cm BP 4 cm AB 4 cm AP 8 cm 02.
Diketahuijari-jari alas suatu tabung adalah 12 cm. Jika tinggi tabung tersebut 10 cm, tentukan volume tabung tersebut? A. 4.521,5 cm³ B. 4.521,6 cm³
3 Diketahui limas beraturan T.ABC dengan bidang alas berbentuk segitiga sama sisi. TA tegak lurus dengan bidang alas. Jika panjang =4√2cm dan =4cm, Tentukan jarak antara titik T dan C. 4. Perhatikan bangun berikut ini. Jika diketahui panjang =5 cm, = = =4 cm, maka tentukan : a) Jarak antara titik A dan C
contohsoal limas segi empat. Itulah pembahasan soal UN SMA mengenai materi bangun ruang. Jika ada yang ingin ditanyakan atau didiskusikan perihal soal sejenis, silahkan tingalkan pesan kolom komentar. .
  • rojpb6b16u.pages.dev/93
  • rojpb6b16u.pages.dev/73
  • rojpb6b16u.pages.dev/25
  • rojpb6b16u.pages.dev/193
  • rojpb6b16u.pages.dev/8
  • rojpb6b16u.pages.dev/399
  • rojpb6b16u.pages.dev/353
  • rojpb6b16u.pages.dev/303
  • rojpb6b16u.pages.dev/301
  • diketahui panjang ruas garis ab adalah 12 cm